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A transient regime with insignificant travel of a nondestructed structure along 
the channel is possible due to the excess of dynamic loads over static ones in 
elastoviscoplastic medium. A short-time slip of the elastic frame relative to 
the channel walls is bound up with propagation of loading and unloading waves 
in a nondestructed structure. 

Plastic disperse systems of the aqueous bentonite suspension type, and consistent lubri- 
cants are capable of forming coagulation thixotropic structures [i]. The structural-mechan- 
ical properties of the spatial skeleton govern the rheological properties of a disperse sys- 
tem. The behavior of plastic structurized media with inelastic dispersion phase is studied 
experimentally in [2, 3]. Analysis of the rheological dependences permitted extraction of 
the range of stress variation corresponding to the different state of the structure. Only 
elastic strains completely reversible under unloading are developed for stresses below a 
certain elastic limit (T < Tk). Exceeding the yield point results in fracture in the struc- 
tural skeleton and plastic flow. Two domains of variation of the shear stress are estab- 
lished in [2, 3]: the creep domain (~k < �9 < ~r) and the plastic flow domain (~r < �9 < ~b). 
Only local fractures in the structure that succeed in being restored correspond to the creep 
state. The plastic flow is characterized by avalanche fracture of the structural skeleton 
and is a flow of structurized dispersion with an ultimately destroyed structure. Passage 
of the system to purely Newtonian flow with completely destroyed coagulation-thixotropic 
relations corresponds to stresses �9 > ~b. Therefore, qualitatively different nature of the 
dispersion strain corresponds to stresses of different intensities. Under real flow condi- 
tions, for instance, in a channel where the stress distribution is inhomogeneous and can 
change with time, zones of elastic strain, creep, plastic flow can be separated out, and 
finally, Newtonian flow for very large shear stresses (this latter zone is absent for the 
moderate stresses being considered in this paper). It is important to note that propagation 
of perturbations in the elastic domain is of wave nature, consequently, a loading wave can 
arrive at this point that will cause destruction of the structure and its flow, and then 
an unloading wave that will restore the destroyed bonds and cut off the flow. Imposition 
of a longitudinal pressure gradient in a plane channel without causing destruction of the 
structural channel results in propagation of a transverse elastic stress wave of triagnular 
profile with maximal value ~max = H(Sp/Sz)0 (H is the channel width, and (Sp/Sz) 0 is the pres- 
sure gradient). If the loading conditions are such that ~k < H(SP/SZ)0, then destruction of 
the structure starts at a certain time at the channel wall and is propagated to the channel 
center at the elastic wave shear velocity. The unloading wave in the elastic domain diminishes 
the stress and causes contraction of the flow zone and also total disappearance of the des- 
troyed structure zone for a sufficiently high intensity. In the first case the transient 
is terminated when a stationary velocity and stress distribution is established in the plas- 
tic flow domain, and in the second when the appearance of a flow zone ceases and a vibrational 
mode of reversible strain of the structural skeleton is established. The transient of the 
second kind is called dynamic [4]. The purpose of this paper is indeed to study the strain 
mode of a disperse medium of dynamic type. Its principal feature is the fluctuating nature 
of the near-wall flow. 

A mathematical model was formulated earlier in [4, 5] and a numerical solution was ob + 
tained for the shear strain problem of an elastic viscoplastic medium in a long channel as 
the pressure gradient varies. In this paper a qualitative analysis is performed of the 
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Fig. I. Strain scheme. 

dynamic transient mode on the basis of an asymptotic solution. The solution, found in the 
form of a d'Alembert wave, shows how reconstruction of the stress profile in the structure is 
related to the appearance and disappearance of near-wall flow zones with a destroyed structure. 
The single assumption used to obtain the analytic solution concerns the width of the flow zone 
with the whole channel width (h(t) << H). As will be shown below, this condition is stisfied, 
if, firstly, e = (H(~p/~z) 0 - ~k)/(H(Sp/az)0/2) << i is a relatively small increase in the 
maximal elastic stress over the value of the yield point, and secondly, Tb/T v << i, the char- 
acteristic time of propagation of a viscous shear wave in a zone with destroyed structure 
Tb = ph2/n is less than the elastic in the undestroyed structure Ty = H~p/G/2. A model taking 
account of the finite strains of the structural skeleton and assuming nearby values of the 
elastic limit Zk and the lower strength limit of the structure zr (~k = Zr -~ Y) was used to 
describe the rheological behavior of the disperse medium. For one-dimensional shear flow 
the rheological equation has the form [6, 7] 
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The displacements of a solid skeleton are described analogously [5] by an initial-boundary value 
problem for the wave equation with boundary conditions dependent on the time and given on the 
unknown boundary 
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The problem (3)-(6.1) is solved by an operational method [8] after removing the boundary 
conditions (6), (6.1) given on the moving boundary between the destroyed and undestroyed struc- 
ture to the channel wall. An unknown velocity is introduced on the boundary of the elastic 
zone r 

I~= _}_- �9 (0. (7) 
If the stresses ~w on the channel wall does not exceed the yield point, then r = 0, and the 
adhesion conditions are satisfied. Otherwise ~(t) # 0, and the elastic skeleton seems to slip 
along the wall at the velocity ~(t) because of near-wall flow from the destroyed structure. 
The profile of the elastic shifts has the form 

4 ~ - ~ -  1)) a 
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where 
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Fig. 2. Dependence of the stress on the 
channel wall (a), width of the layer with 
destroyed structure (b), and velocity on 
the structural skeleton boundary (c) on 
time for a = i, r = 25, e = 0.25. 
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The parameter a is the characteristic of the elastic strains in the medium max(Su/Sy) = 2/a 2. 

The function r can be determined from the conditions (6) and (6.1) referred to the 
channel boundary 
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Therefore, the solution of the problem reduces to two integral relationships (9) for the 
velocity on the boundary between the destroyed and undestroyed structures and for the width 
of the viscoplastic flow h(t). Represented in Table 1 and Fig. 2 are dependences of the 
stress on the channel wall Xw(a) , the width of the layer from the destroyed structure h(t)(b) 
and the velocity on the structural skeleton boundary r (c) on the time (a = i, r = 25, g = 
0.25). Upon imposition of a pressure gradient o_n the channel boundary a loading wave is 
generated. The stress Xw grows linearly. For t = (2 - g)/a its magnitude reaches the yield 
point y = Y/(H(Sp/Sz)0/2) consequently destruction of the structure and slippage of the struc- 
tural skeleton along the wall start in the near-wall domain. Growth of the absolute value of 
the slippage velocity (r -5 0) diminishes the amplitude of the perturbations being propa- 
gated to the channel center as compared with the case of structure strain without destruction. 
For t = 2/a the modulus of the velocity on the boundary between the domains with thedestroyed 
and undestroyed structure [$(~)i reaches the maximal value and then decreases. For t > 2/a 
an unloading wave is formed in the structure. Diminution of the magnitude of the velocity of 
structural skeleton motion (in modulus) now increases the amplitude of the perturbations being 
separated from the boundary. For t -- (2 + E)/a the stress on the boundary element of the skele- 
ton drops below the yield point, consequently, the domain of the destroyed structure vanishes, 
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TABLE i. Change of the Functions ~w(t), ~(t), h(t) with Time 
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the slippage ceases. As is seen from the solution, the transient is also terminated since 
periodic stress and displacement vibrations are later established in the medium. The steady 
stress wave profile (III) differs from the corresponding profile of a wave being propagated 
in an elastic structure. It is (Fig. 2) the superposition of the triangular waves I and the 
wave II formed because of formation of flow zones of a medium with destroyed structure. For 
t = (4 - e)/a an unloading wave I and a_loading wave II approach the wall. Their imposition 
yields stress growth on the wall. Fort = 4/a unloading I and II waves stand off the boundary, 
resulting in a diminution of Tw. For t > (4 + c)/a the amplitude of the wave II equals zero 
on the channel boundary. Growth of the tangential stress is determined only by the loading 
wave I etc. The period of steady vibrations is T = 4/a. 

It follows from the condition h(t) << 1 that, as has been noted earlier, the relation- 
ships e << I, Tb/Ty << 1 should be satisfied. This last inequality is necessary for inertial- 
less flow of the destroyed structure. 

Shown in Fig. 3 are results of a numerical solution of the problem. The asymptotic solu- 
tion is qualitatively in agreement with the numerical solution that satisfactorily reflects 
the singularity of the transientand steady shear strain process. The dashed line refers to 
the analytic, and the solid line to the numerical solution (a = i, ~ = 25, e = 0.5), The yield 
point is 1-10 4 Pa for many disperse systems. The dynamic transient mode in a 10, 2 m wide chan- 
nel is realized for pressuregradients, respectively, of 102-10 5 Pa/m. The transient termin- 
ates at t = (2 + e)Ty and its duration is ~I-10 -s sec for G from 1 Pa to 10 4 Pa. As the 
asymptotic solution shows, the undestroyed structure shifts a distance e2H/2(~10, 4 m) along 
the channel in practice during a time interval eTy (~10-i-10 -4 sec) in the dynamic transient 
mode. The brief slippage of the elastic skeleton relative to the channel walls is related to 
loading and unloading wave propagation in the undestroyed structure. Thestructure is des- 
troyed at the wall in the loading phase. The near-wall flow of the medium causes a shift of 
the undestroyed structure which corresponds to the slippage. Reconstruction of the tangential 
stress wave profile diminishes its amplitude, consequently, destruction of the structure does 
not later occur. Therefore, the results obtained show that because of the excess of the dynamic 
loads in the undestroyed structure (Tmax = H(Sp/3z)0) of the static (Tmax = H(SP/SZ)0/2) a 
transient mode is possible to accompany moderate progress of the undestroyed structure along 
the channel. A break in the pressure gradient results in a change in the elastic wave ampli- 
tude. The greatest possible stress wave amplitude equals the yield point (for a break in the 
pressure gradient at the time t = (2 + g)/a). If an additional rise in the pressure gradient 
by a very small quantity ~e(Sp/Sz) 0 is realized after the break, then again brief slippage of 
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Fig. 3. Comparison of the analytical and 
numerical [4] solutions for a = i, ~ = 25, 

= 0.5: i) analytical, and 2) numerical 
computation. 

the skeleton will occur along the channel (the amplitude of superposition of the reverse 
stress wave III and the wave being generated at the channel wall because of the additional 
rise in the pressure gradient exceeds the yield point). The motion mechanism for a medium 
of the type considered can be realized for vibration actions. 

NOTATION 

�9 , shear stress; ~k, yield point; ~r, ~b, lower and upper bounds of the plastic flow 
domain; H, channel width; 8p/Sz, pressure gradient; h, width of the flow zone with destroyed 
structure; l(x), Heaviside function; G, elastic modulus of the structural skeleton; N, plastic 
viscosity; Y, yield point; X, shear velocity; v = 8u/3t, velocity of particles of the medium; 
u, particle displacement; y, z, Cartesian coordinates, and Zw, shear stress on the channel 
wall. 
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